Chapter 2

Approximation by Algebraic
Polynomials

The Weierstrass Theorem

Let’s begin with some notation. Throughout this chapter, we’ll be concerned with the
problem of best (uniform) approximation of a given function f € C[a,b] by elements from
P, the subspace of algebraic polynomials of degree at most n in C[a,b]. We know that the
problem has a solution (possibly more than one), which we've chosen to write as p. We set

Ea(f) = mig [If = pll = I = i

Because P,, C Pp41 for each n, it’s clear that F,(f) > E,+1(f) for each n. Our goal in this
chapter is to prove that E,(f) — 0. We’ll accomplish this by proving:

Theorem 2.1. (The Weierstrass Approximation Theorem, 1885) Let f € C[a,b]. Then,
for every e > 0, there is a polynomial p such that || f — p|| < e.

Tt follows from the Weierstrass theorem that, for some sequence of polynomials (g ), we
have ||f — gx|| — 0. We may suppose that g; € P,, where (ng) is increasing. (Why?)
Whence it follows that E, (f) — 0; that is, p}, =3 f. (Why?) This is an important first step
in determining the exact nature of E,, (f) as a function of f and n. We'll look for much
more precise information in later sections.

Now there are many proofs of the Weierstrass theorem (a mere three are outlined in

the exercises, but there are hundreds!), and all of them start with one simplification: The
underlying interval [a,b] is of no consequence.
Lemma 2.2. If the Weierstrass theorem holds for C[0,1], then it also holds for C[a,b],
and conversely. In fact, C[0,1] and C[a,b] are, for all practical purposes, identical: They
are linearly isometric as normed spaces, order isomorphic as lattices, and tsomorphic as
algebras (rings).

Proof. We'll settle for proving only the first assertion; the second is outlined in the exercises
(and uses a similar argument). See Problem 1.
First, notice that the function

ox)=a+(b—-a)r, 0<x<l,

11
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defines a continuous, one-to-one map from [0,1] onto [a,b]. Given f € C[a,b], it follows
that g(z) = f(o(x)) defines an element of C[0,1]. Moreover,

o2ax |g(x)| = max |f(t)].

Now, given £ > 0, suppose that we can find a polynomial p such that ||g — p|| < &; in other
words, suppose that
max |f(a+ (b—a)z) —p(z)| <e.

0<z<1
t—a
f(t)—p(b_a>’<5.

t—a

(Why?) But if p(z) is a polynomial in x, then ¢(t) = p (b:—a) is a polynomial in t satisfying

If —all <e.
The proof of the converse is entirely similar: If g(z) is an element of C[0,1], then

Then,

max
a<t<b

fit)y=g ( ) a <t <b, defines an element of C[a,b]. Moreover, if ¢(t) is a polynomial

in ¢ approximating f(¢), then p(z) = g(a + (b — a)z) is a polynomial in x approximating
g(x). The remaining details are left as an exercise. O

The point to our first result is that it suffices to prove the Weierstrass theorem for any
interval we like; [0,1] and [—1,1] are popular choices, but it hardly matters which interval
we use.

Bernstein’s Proof

The proof of the Weierstrass theorem we present here is due to the great Russian math-
ematician S. N. Bernstein in 1912. Bernstein’s proof is of interest to us for a variety of
reasons; perhaps most important is that Bernstein actually displays a sequence of polyno-
mials that approximate a given f € C[0,1]. Moreover, as we'll see later, Bernstein’s proof
generalizes to yield a powerful, unifying theorem, called the Bohman-Korovkin theorem (see
Theorem 2.9).

If f is any bounded function on [0,1], we define the sequence of Bernstein polynomials

for f by
Z (k/n) - ( ) 1 —z)nk, 0<z<L

Please note that B, (f) is a polynomial of degree at most n. Also, it’s easy to see that

(Bn(f))(0) = f(0), and (B ( ))(1) = f(1). In general, (B,(f))(x) is an average of the
numbers f(k/n), k = 0,...,n. Bernstein’s theorem states that B,(f) = f for each f €
C[0,1]. Surprisingly, the proof actually only requires that we check three easy cases:

fo(x) =1, fi(z)==x, and folz)=2>
This, and more, is the content of the following lemma.

Lemma 2.3. (1) Bn(fo) = f() and Bn(fl) = fl-

(i) Bn(f2) = (1 - %)fz + 1 f1, and hence By(f2) = fo.
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- k 2/n k —k (1 - ’I‘) 1 .
(iii) ,;:O(” a:) <k>x (1—-x) - < if 0<z<1
(iv) Given 0 >0and 0 < z <1, let F denote the set of k in {0,...,n} for which

1
1] 5. Then' Y ( ) (1- <1

kEF

Proof. That B, (fo) = fo follows from the binomial formula:

Z (Z)fﬂ"(l )" =lr+ (-2t =1

k=0

To see that B, (f1) = f1, first notice that for k > 1 we have

k(n\ _ (n—1)! _(n—-1
n\k) (k-Dln-k! \k-1)
Consequently,

e I

k=0

Next, to compute B, (f2), we rewrite twice:
kN? (n\  k(n-1 n—1 k—1(n-1\ 1(n-1
=z == — S - if k>1
<n> (k’) n(k’—l) n n—1<k—1)+n<k’—1>71 -
1 n—2 1/n—-1
— — i > 2.
(1 n><k‘—2>+n<k‘—1>’lfk_2

Thus,
n 2
k
(2) (D)0
k=0
1\ = (n—2 ok I~ (n—1 e
)G (e
k=2 k=1
1 1
= (1——):1:2+—T
n n
which establishes (i) because ||By,(f2) — f2| = 2| f1 — f2|| = 0 as n — oco.

To prove (iii) we comblne the results in (i) and (ii) and simplify. Because ((k/n) —x)? =
(k/n)? — 2z(k/n) + 2%, we get

B (e

k=0

1 1
(1——>x2+—x—2x2+x2
n n

1 (a ) < 1
—z(l—=z —
n ~ 4n
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for0 <z <1.
Finally, to prove (iv), note that 1 < ((k/n) — 2)2/2 for k € F, and hence

2, <Z>$k(1 - 6_12];(2 _33)2(2>xk(1 —z)" "

keF
< BEE- ()0
k=0

<

IN

m, from (111) . O
T

Now we'’re ready for the proof of Bernstein’s theorem:

Proof. Let f € C[0,1] and let € > 0. Then, because f is uniformly continuous, there is
a d > 0 such that |f(x) — f(y)| < €/2 whenever |x — y| < §. Now we use the previous
lemma to estimate || f — By,(f)||. First notice that because the numbers (})2* (1 —z)"~* are
nonnegative and sum to 1, we have

[f(x) = Bu(f)()]

Il
—~
—
&

|
(]

VRS
> 3
N~
kh
7/ N
| =~
N———
8
=
—

—

|

=
S~—

i
=

kznjzo (f(x) —f (%)) (Z)x’“(l — )k

n

IN

S i) - f (S)] (})eta-ar,

k=0

Now fix n (to be specified in a moment) and let ' denote the set of k in {0, ..., n} for which
|(k/n) — x| > 6. Then |f(zx) — f(k/n)| < e/2 for k ¢ F', while |f(z) — f(k/n)| < 2| f|| for
k € F. Thus,

|f(@) = (Ba(f)) (2)]

3 n . _ n B
< 3 Z <k>mk(1 — )"k £l Z (k>xk(1 — )k
k¢F keF
€ 1
— .1 2 . fr H
< 5 + 2|1l 1320 fom (iv) of the Lemma,
< &, provided that n > || f||/26%. d

Landau’s Proof

Just because it’s good for us, let’s give a second proof of Weierstrass’s theorem. This one
is due to Landau in 1908. First, given f € C[0,1], notice that it suffices to approximate
f — p, where p is any polynomial. (Why?) In particular, by subtracting the linear function
f(0)+xz(f(1) — f(0)), we may suppose that f(0) = f(1) = 0 and, hence, that f = 0 outside
[0,1]. That is, we may suppose that f is defined and uniformly continuous on all of R.

Again we will display a sequence of polynomials that converge uniformly to f; this time
we define

Lu(x) = e, / 11 a4 1) (1— )" dr,
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where ¢, is chosen so that
1
cn/ (1—tH"dt = 1.
-1
Note that by our assumptions on f, we may rewrite L, (x) as

Ln(z) = cn /l_mf(aﬂ—t)(l T T, /01 F) (1= (t — 2)2)" dt.

T

Written this way, it’s clear that L,, is a polynomial in z of degree at most n.
We first need to estimate ¢,. An easy induction argument will convince you that (1 —
t2)" > 1 — nt?, and so we get

1-— n > 92 1— = _
/_1( £2y7 gt > /0 (1= ntt)dt = == >

from which it follows that ¢, < /n. In particular, for any 0 < § < 1,

cn/l(l—tz)"dt< V(1 =8)" =0  (n— o),
)

which is the inequality we’ll need.
Next, let € > 0 be given, and choose 0 < < 1 such that
|f(x) — f(y)] <e&/2 whenever |z —y| < 4.

Then, because ¢, (1 —t2)" > 0 and integrates to 1, we get

1
L@ =@ = |en [ (o0 - )0 -
1
< o If@rn—f@i0-era
) 1
< gcn/_é(l—tQ)"dt+4||f||cn/6 (1—t3)"dt
< SHAIfIVRQ - <,
provided that n is sufficiently large. O

A third proof of the Weierstrass theorem, due to Lebesgue in 1898, is outlined in the
problems at the end of the chapter (see Problem 7). Lebesgue’s proof is of historical in-
terest because it inspired Stone’s version of the Weierstrass theorem, which we’ll discuss in
Chapter 11.

Before we go on, let’s stop and make an observation or two: While the Bernstein poly-
nomials B, (f) offer a convenient and explicit polynomial approximation to f, they are by
no means the best approximations. Indeed, recall that if f;(2) = 2 and fo(z) = 22, then
B,(f2) =(1- %)f 2+ % f1 # fo. Clearly, the best approximation to fo out of P, should be
fa itself whenever n > 2. On the other hand, because we always have

En(f) <IIf =Bu(HIl (why?),

a detailed understanding of Bernstein’s proof will lend insight into the general problem of
polynomial approximation. Our next project, then, is to improve upon our estimate of the

error |[f = Bn(f)]-
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Improved Estimates

To begin, we will need a bit more notation. The modulus of continuity of a bounded function
f on the interval [a,b] is defined by

wy(8) = wy([a,b];0) = sup{ |f(z) — f(y)| : 2,y € [a,b], [w —y| <o}

for any § > 0. Note that wy(d) is a measure of the “c” that goes along with ¢ (in the
definition of uniform continuity); literally, we have written ¢ = wy(d) as a function of 4.
Here are a few easy facts about the modulus of continuity:

Exercise 2.4.
1. We always have |f(z) — f(y)] < ws(|z —y|) for any x #y € [a,b].
2. If 0 < ¢’ <4, then wy(d") < wyp(9).

3. f is uniformly continuous if and only if w(d) — 0 as 6 — 0. [Hint: The statement
that |f(x) — f(y)| < € whenever |z — y| < ¢ is equivalent to the statement that
wr(0) < e

4. If f exists and is bounded on [a,b], then wy(d) < K6 for some constant K.

5. We say that f satisfies a Lipschitz condition of order o with constant K, where 0 <
a<land 0 <K <oo,if |[f(z) — f(y)] < K|z —y| for all z, y. We abbreviate this
statement by writing: f € lipga. Check that if f € lipga, then wy(§) < K§* for all
0> 0.

For the time being, we actually need only one simple fact about w(4):

Lemma 2.5. Let f be a bounded function on [a,b] and let § > 0. Then, ws(nd) < nwy(d)
forn=1,2,.... Consequently, ws(A6) < (1+ A)ws(d) for any X > 0.

Proof. Given z < y with |z — y| < né, split the interval [z,y] into n pieces, each of length
at most d. Specifically, if we set z, = x+k(y—z)/n, for k =0,1,...,n, then |z —zk_1| < 0
for any £ > 1, and so

@) = fly)l =

S F ) — Flz)
k=1

< 31— fan)
k=1
< nwys(6).

Thus, w¢(nd) < nwy(d).
The second assertion follows from the first (and one of our exercises). Given A > 0,
choose an integer n so that n —1 < A < n. Then,

wr(A) Sws(nd) <nwp(d) < (14 X)wy(9). O

We next repeat the proof of Bernstein’s theorem, making a few minor adjustments here
and there.
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Theorem 2.6. For any bounded function f on [0,1] we have

If = Ba(f)] < g%%)

In particular, if f € C[0,1], then E,(f) < %cuf(\/iﬁ) — 0 asn — oo.

Proof. We first do some term juggling:

(s (£)) ()20

NE

[f(x) = Bn(f)()|

k
a2
B o
R R

R [}

where the third inequality follows from Lemma 2.5 (by taking A = \/n ‘L — %‘ and 6 =
\/Lﬁ ). All that remains is to estimate the sum, and for this we’ll use Cauchy-Schwarz

(and our earlier observations about Bernstein polynomials). Because each of the terms
(Z')Tk(l — )" ¥ is nonnegative, we have

n
1+ Vi)
k=0

i x—% (:):I:k(l—x)"_k
k=0
o |
" k|* /n & e 12 " /n & ek Yz
S[];) z- = (k)x (1—ux) ] Lz;)(k):c (1—-ux) ]
1172
= H RN

Finally,

Examples 2.7.

1. If f € lipga, it follows that ||f — B,(f)| < 2Kn~°/2 and hence that E,(f) <
%Kn’a/z.
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2. As a particular case of the first example, consider f(z) = ’as — %‘ on [0,1]. Then
f €lip;1, and so || f — Bn(f)|| < 2 n~'/2. But, as Rivlin points out (see Remark 3 on
p. 16 of [45]), ||f —Bn(f)|| > % n~2. Thus, we can’t hope to improve on the power of
n in this estimate. Nevertheless, we will see an improvement in our estimate of E,, (f).

The Bohman-Korovkin Theorem

The real value to us in Bernstein’s approach is that the map f — B, (f), while providing a
simple formula for an approximating polynomial, is also linear and positive. In other words,

Bu(f +9) = Bu(f) + Bu(9),
Bu(af) = aBn(f). a €R,
and

B, (f) > 0 whenever f > 0.

(See Problem 15 for more on this.) As it happens, any positive, linear map T : C[0,1] —
C[0,1] is automatically continuous!

Lemma 2.8. If T : Cla,b] — Cla,b] is both positive and linear, then T is continuous.

Proof. First note that a positive, linear map is also monotone. That is, T satisfies T'(f) <
T'(g) whenever f < g. (Why?) Thus, for any f € Cla,b], we have

= F <= =T(), T(f) <T(f]);

that is, |T°(f)] < T(|f]). But now |f| < | f]l - 1, where 1 denotes the constant 1 function,
and so we get

TN <TAS) < IAIT).
Thus,
1O < [T @)
for any f € Cla,b]. Finally, because T is linear, it follows that T is Lipschitz with constant
[Tl
1T(f) =T = 1T =gl <T@ If = gl

Consequently, T is continuous. O
Now positive, linear maps abound in analysis, so this is a fortunate turn of events.
What’s more, Bernstein’s theorem generalizes very nicely when placed in this new setting.

The following elegant theorem was proved (independently) by Bohman and Korovkin in,
roughly, 1952.

Theorem 2.9. Let T, : C[0,1] — C[0,1] be a sequence of positive, linear maps, and
suppose that T,(f) — f uniformly in each of the three cases

fo(x) =1, fi(x)==x, and folz)=2>
Then, T (f) — f uniformly for every f € C[0,1].

The proof of the Bohman-Korovkin theorem is essentially identical to the proof of Bern-
stein’s theorem except, of course, we write T,,(f) in place of B, (f). For full details, see [12].
Rather than proving the theorem, let’s settle for a quick application.
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Example 2.10. Let f € C[0,1] and, for each n, let L, (f) be the polygonal approximation
to f with nodes at k/n, k = 0,1,...,n. That is, L,(f) is linear on each subinterval
[(k—1)/n, k/n] and agrees with f at each of the endpoints: L, (f)(k/n) = f(k/n). Then
L, (f) — f uniformly for each f € C[0,1]. This is actually an ecasy calculation all by itself,
but let’s see why the Bohman-Korovkin theorem makes short work of it.

That L, (f) is positive and linear is (nearly) obvious; that L,(fo) = fo and L,(f1) = f1
are really easy because, in fact, L,(f) = f for any linear function f. We just need to show
that L,(f2) = fo. But a picture will convince you that the maximum distance between
L, (f2) and fs on the interval [(k —1)/n, k/n] is at most

E\? (k—=1\" 26-1 _2
b I - < Z.
n n n? ~n
That is, || fo — Ln(f2)|] <2/n — 0 as n — oc.
[Note that L, is a linear projection from C[0, 1] onto the subspace of polygonal functions
based on the nodes k/n, k =0,...,n. An easy calculation, similar in spirit to the example

above, will show that ||f — L,(f)|| < 2w;(1/n) — 0 as n — oo for any f € C[0,1]. See
Problem 8.]
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Problems

>x 1. Define o : [0,1] — [a,b] by o(t) = a+t(b—a) for 0 <t < 1, and define a transfor-
mation T, : Cla,b] — C[0,1] by (T,(f))(t) = f(o(t)). Prove that T, satisfies:

(a) To(f +9) = T(f) + Tr(9) and T, (cf) = cT,(f) for c € R.

(b) T»(fg9) = T,(f) T»(g). In particular, T, maps polynomials to polynomials.
(c) T,(f) <T,(g) if and only if f < g.

() [[T5 (A =[£I

(e) T, is both one-to-one and onto. Moreover, (1,)~ =T, 1.

>x 2. Bernstein’s Theorem shows that the polynomials are dense in C[0,1]. Using the
results in Problem 1, conclude that the polynomials are also dense in C[a,b].

>+ 3. How do we know that there are non-polynomial elements in C[0,1]? In other words,
is it possible that every element of C[0,1] agrees with some polynomial on [0,1]?

4. Let (Q,,) be a sequence of polynomials of degree m,,, and suppose that (Q,,) converges
uniformly to f on [a,b], where f is not a polynomial. Show that m,, — oco.

5. Use induction to show that (1 + x)" > 1+ nz, for all n = 1,2, ..., whenever x > —1.
Conclude that (1 —#2)" > 1 — nt? whenever —1 <t < 1.

A polygonal function is a piecewise linear, continuous function; that is, a continuous function
f:[a,b] — R is a polygonal function if there are finitely many distinct points a = zg <

x1 < -+ < xp = b, called nodes, such that f is linear on each of the intervals [x;_1, T ],
k=1,....n
Fix distinct points ¢ = 29 < 21 < -+ < &, = b in [a,b], and let S, denote the set

of all polygonal functions having nodes at the x;. It’s not hard to see that S,, is a vector
space. In fact, it’s relatively clear that S,, must have dimension exactly n + 1 as there are
n+ 1 “degrees of freedom” (each element of S, is completely determined by its values at
the ). More convincing, perhaps, is the fact that we can easily display a basis for S,,. (see
Natanson [41]).

* 6. (a) Show that S, is an (n + 1)-dimensional subspace of C[a,b]| spanned by the
constant function po(z) = 1 and the “angles” vr+1(z) = | — x| + (z — xy) for
k =0,...,n— 1. Specifically, show that each h € S,, can be uniquely written
as h(z) = co + >, cipi(x). [Hint: Because each side of the equation is an
element of Sy, it’s enough to show that the system of equations h(xg) = ¢ and
hzk) = co + 222;1 ci(zry —xi—1) for kK =1,...,n can be solved (uniquely) for
the ¢;.]

(b) Each element of S,, can be written as Z;:ll a;|lz — z;| + bz + d for some choice
of scalars ay,...,an,_1, b, d.

* 7. Given f € C[0,1], show that f can be uniformly approximated by a polygonal func-
tion. Specifically, given a positive integer n, let L,(z) denote the unique polygonal
function with nodes at (k/n)}_, that agrees with f at each of these nodes. Show that
| f — Ly is small provided that n is sufficiently large.
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(a) Let f be in lipo1; that is, suppose that f satisfies |f(x) — f(y)| < Clx — y| for
some constant C and all z, y in [0,1]. In the notation of Problem 7, show that
If—Lnl| <2C/n. [Hint: Given x in [k/n, (k+1)/n), check that | f(z) — Ly (z)| =
[f (@) = f(k/n) + Ln(k/n) = Lo (2)| < [f(x) = f(k/n)| 4+ [f((k+1)/n) — f(k/n)]]

(b) More generally, prove that ||f — L,(f)|| < 2w¢(1/n) — 0 as n — oo for any
fecC[o,n].

In light of the results in Problems 6 and 7, Lebesgue noted that he could fashion a proof
of Weierstrass’s Theorem provided he could prove that |z — ¢| can be uniformly approx-
imated by polynomials on any interval [a,b]. (Why is this enough?) But thanks to the
result in Problem 1, for this we need only show that |z| can be uniformly approximated by
polynomials on the interval [—1,1].

* 9.

10.

11.

12.

13.

14.

> 15.

16.

17.

* 18.

Here’s an elementary proof that there is a sequence of polynomials (P,) converging
uniformly to |z| on [—1,1].

(a) Define (P,) recursively by P,11(z) = P, (z) + [z — P,(7)?]/2, where Py(x) = 0.
Clearly, each P, is a polynomial.

(b) Check that 0 < P, (z) < Pyy1(z) < /x for 0 < z < 1. Use Dini’s theorem to
conclude that P,(z) = y/z on [0,1].

(¢) Ppn(x?) is also a polynomial, and P,(z?) = |z| on [—1,1].

If f e C[-1,1]is an even function, show that f may be uniformly approximated by
even polynomials (that is, polynomials of the form ZZ:O apx?k).

If f € C[0,1] and if f(0) = f(1) = 0, show that the sequence of polynomials
Sieo [(W) f(k/n)] 2*(1 — 2)"~* having integer coefficients converges uniformly to f
(where [2] denotes the greatest integer in ). The same trick works for any f € Cla,b]
provided that 0 < a < b < 1.

If p is a polynomial and € > 0, prove that there is a polynomial ¢ with rational
coefficients such that ||p — ¢|| < € on [0,1]. Conclude that C[0,1] is separable (that
is, C[0,1] has a countable dense subset).

;

k=0,1,2,.... Show that nlgrgo % S f(w;) exists for every f e C[0,1].

Let (z;) be a sequence of numbers in (0,1) such that nILH;O LS " aF exists for every

If f € C[0,1] and if fol 2" f(x)dx =0 for each n = 0,1,2,..., show that f = 0. [Hint:
Using the Weierstrass theorem, show that fol f2=0]

Show that |B,(f)| < Bn(|f|), and that B,(f) > 0 whenever f > 0. Conclude that
[Bu (NI < NI

If f is a bounded function on [0,1], show that B,(f)(z) — f(z) at each point of
continuity of f.

Find B, (f) for f(z) = 23. [Hint: k%> = (k—1)(k—2) +3(k—1) +1.] The same method
of calculation can be used to show that B,,(f) € P,, whenever f € P,, and n > m.

Let f be continuously differentiable on [a,b], and let € > 0. Show that there is a
polynomial p such that ||f —p|| <€ and ||f' —P'|| <e.
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19.

20.

21.

22.
23.

> 24.

25.
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Suppose that f € C[a,b] is twice continuously differentiable and has f” > 0. Prove
that the best linear approximation to f on [a,b] is a9 + a1z where ag = f'(c),
a1 = [f(a) + f(c) + f'(¢)(a + ¢)]/2, and where ¢ is the unique solution to f'(c) =
(f(b) = f(a))/(b—a).

Let f:[a,b] — R be a bounded function. Prove that
wy([a,b];8) = sup{ diam(f(I)) : I C [a,b], diam(I) <& }
where I denotes a closed subinterval of [a, b] and where diam(A) denotes the diameter

of the set A.

If the graph of f : [a,b] — R has a jump of magnitude o > 0 at some point z( in
[a,b], then wy(d) > o for all 6 > 0.

Calculate wy for g(z) = /.

If f e Cla,b], show that w(d1 + d2) < wy(d1) + wy(d2) and that ws(d) | 0 as d | 0.
Use this to show that w; is continuous for 6 > 0. Finally, show that the modulus of
continuity of wy is again wy.
(a) Let f:[-1,1] = R. If & = cos §, where —1 <z <1, and if g(0) = f(cos @), show
that wy([—m,7],0) = we([0,7],8) <wy([—1,1];9).

(b) If h(z) = f(axz+D) for ¢ < x < d, show that wy([¢,d]; ) = wr([ac+b, ad+b]; ad).
(a) Let f be continuously differentiable on [0,1]. Show that (B,(f)’) converges
uniformly to f’ by showing that ||B,(f’) — (Bn+1(f))' || L ws (1/(n+1)).

(b) In order to see why this is of interest, find a uniformly convergent sequence of

polynomials whose derivatives fail to converge uniformly.

[Compare this result with Problem 18]



